October 10, 2019
Satin properties
1. | Ishikawa T, Chou TW. Elastic behavior of woven hybrid composites. J Compos Mater 1982; 16(1): 2–19. Google Scholar |
2. | Ishikawa T, Chou TW. In-plane thermal expansion and thermal bending coefficients of fabric composites. J Compos Mater 1983; 17(2): 92–104. Google Scholar |
3. | Ishikawa T, Chou TW. Stiffness and strength behaviour of woven fabric composites. J Mater Sci 1982; 17(11): 3211–3220. Google Scholar |
4. | Ishikawa T, Chou TW. Thermoelastic analysis of hybrid fabric composites. J Mater Sci 1983; 18(8): 2260–2268. Google Scholar |
5. | Ishikawa T, Matsushima M, Hayashi Y. Experimental confirmation of the theory of elastic moduli of fabric composites. J Compos Mater 1985; 19(5): 443–458. Google Scholar |
6. | Naik NK, Shembekar PS. Elastic behavior of woven fabric composites: I-lamina analysis. J Compos Mater 1992; 26(15): 2196–2225. Google Scholar |
7. | Naik NK, Shembekar PS. Elastic behavior of woven fabric composites: III – laminate design. J Compos Mater 1992; 26(17): 2522–2541. Google Scholar |
8. | Shembekar PS, Naik NK. Elastic behavior of woven fabric composites: II-laminate analysis. J Compos Mater 1992; 26(15): 2226–2246. Google Scholar |
9. | Ganesh VK, Naik NK. Thermal expansion coefficients of plain-weave fabric laminates. Compos Sci Technol 1994; 51(3): 387–408. Google Scholar |
10. | Naik NK, Ganesh VK. Prediction of on-axes elastic properties of plain weave fabric composites. Compos Sci Technol 1992; 45(2): 135–152. Google Scholar |
11. | Naik NK, Ganesh VK. Prediction of thermal expansion coefficients of plain weave fabric composites. Compos Struct 1993; 26(3–4): 139–154. Google Scholar |
12. | Naik NK, Ganesh VK. Thermo-mechanical behaviour of plain weave fabric composites: experimental investigations. J Mater Sci 1997; 32(1): 267–277. Google Scholar |
13. | Hahn HT, Pandey R. A micromechanics model for thermoelastic properties of plain weave fabric composites. J Eng Mater Technol 1994; 116(4): 517–523. Google Scholar |
14. | Hill R. Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 1963; 11(5): 357–372. Google Scholar |
15. | Hollister S, Kikuchi N. A comparison of homogenization and standard mechanics analyses for periodic porous composites. Comput Mech 1992; 10: 73–95. Google Scholar |
16. | Kar-Gupta R, Venkatesh TA. Electromechanical response of piezoelectric composites: effects of geometric connectivity and grain size. Acta Mater 2008; 56(15): 3810–3823. Google Scholar |
17. | Michel JC, Moulinec H, Suquet P. Effective properties of composite materials with periodic microstructure: a computational approach. Comput Meth Appl Mech Eng 1999; 172(1–4): 109–143. Google Scholar |
18. | Naik A, Abolfathi N, Karami G. Micromechanical viscoelastic characterization of fibrous composites. J Compos Mater 2008; 42(12): 1179–1204. Google Scholar |
19. | Whitcomb JD, Chapman CD, Tang X. Derivation of boundary conditions for micromechanics analyses of plain and satin weave composites. J Compos Mater 2000; 34(9): 724–747. Google Scholar |
20. | Xia Z, Zhang Y, Ellyin F. A unified periodical boundary conditions for representative volume elements of composites and applications. Int J Solids Struct 2003; 40: 1907–1921. Google Scholar |
21. | Xia Z, Zhou C, Yong Q. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. Int J Solids Struct 2006; 43(2): 266–278. Google Scholar |
22. | Glaessgen EH, Pastore CM, Griffin OH. Geometrical and finite element modelling of textile composites. Composites Part B 1996; 27(1): 43–50. Google Scholar |
23. | Dasgupta A, Bhandarkar SM. Effective thermomechanical behavior of plain-weave fabric-reinforced composites using homogenization theory. J Eng Mater Technol 1994; 116(1): 99–105. Google Scholar |
24. | Golestanian H, El-Gizawy AS. Modeling of process induced residual stresses in resin transfer molded composites with woven fiber mats. J Compos Mater 2001; 35(17): 1513–1528. Google Scholar |
25. | Huang X, Gillespie JWJr, Bogetti T. Process induced stress for woven fabric thick section composite structures. Compos Struct 2000; 49(3): 303–312. Google Scholar |
26. | Golestanian H, Sherif El-Gizawy A. Cure dependent lamina stiffness matrices of resin transfer molded composite parts with woven fiber mats. J Compos Mater 1997; 31(23): 2402–2423. Google Scholar |
27. | Svanberg JM, Altkvist C, Nyman T. Prediction of shape distortions for a curved composite C-spar. J Reinf Plast Compos 2005; 24(3): 323–339. Google Scholar |
28. | TexGen. Main page, (2010, accessed January 2010). |
29. | Toho Tenax America, Inc. G30-500 6k carbon fibre data sheet, (2010, accessed January 2010). |
30. | |
31. | |
32. | |
33. | Khoun L, Centea T, Hubert P. Characterization methodology of thermoset resins for the processing of composite materials – case study: CYCOM 890RTM epoxy resin. J Compos Mater 2010; 44(11): 1397–1415. Google Scholar |
34. | ASTM D31. Standard test method for constituent content of composite material. |
35. | ASTM Standard D790:2003. Standard test method for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. |
36. | Smitheman SA, Jones IA, Long AC, et al. A voxel-based homogenization technique for the unit cell thermomechanical analysis of woven composites. In: Proceedings of the 17th International Conference on Composite Materials (ICCM-17), Edinburgh, UK, 27–31 July 2009. |
37. | Khoun L, Hubert P. Investigation of the dimensional stability of carbon epoxy cylinders manufactured by resin transfer moulding. Composites Part A 2010; 41(1): 116–124. Google Scholar |